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Objectives: The authors utilize a model of activity-dependent neuronal plasticity to
study the interplay between synaptogenesis, neuronal death, and neurogenesis on the
resulting pattern of neuronal connectivity. Design: A mathematical model of neuronal
network activity was employed, with plasticity instantiated by an activity-dependent
rewiring rule. In particular, the authors modeled a neural system as a collection of
“nodes” (neural subsystems) connected by “links” (anatomical connectivity). Neuronal
damage was simulated by deletion of nodes in this evolving network through either
random or targeted attack. Neurogenesis was likewise simulated by insertion of new
nodes with random connections. Measurements: Local and global structural network
properties were characterized using the metrics of local and global “efficiency,” and
network “reachability.” Results: Activity-dependent plasticity yields a network that is
robust to random node deletion, with preservation of a “small-world” architecture,
characterized by high local and global efficiency. In contrast, targeted deletion of central
nodes leads to a drop in reachability and global efficiency, with a consequent loss of
small-world properties. Simulated neurogenesis is able to compensate for this targeted cell
loss even when rates of new cell formation are considerably slower than that of simu-
lated cell death. Conclusions: The rapid growth of computational neuroscience enables
to study the interplay between neuronal plasticity and cell death in computational
models of brain network activity. Although the current simulations lack much of the rich
physiology of real neuronal systems, they nevertheless allow us to make tentative hy-
potheses of the effects of neuronal lesions on the resulting neuroanatomical connectivity
networks. (Am J Geriatr Psychiatry 2009; 17:210–217)
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Over the last several decades, the idea that brain
plasticity is a property that is maintained across

the lifespan has become accepted. Early in develop-
ment, neuro- and synaptogenesis and neural pruning
are central in sculpting the emergence of normal
cognitive function.1,2 These same processes appear to
extend to adulthood and may play a vital role in the
reported capacity of the adult brain to reorganize
following focal damage or to compensate for de-
generative processes.3– 6 More recently, the obser-
vation of brain reorganization in adulthood has led
to the development of brain reserve theory, which
attempts to explain the variability in clinical pre-
sentation that is seen in neuropathologic, and es-
pecially neurodegenerative disorders.7,8 In the
present study, we employ recent advances in com-
putational neuroscience to examine the potential
underpinnings of this theory (Fig. 1). While a bio-
logic characterization of this concept remains chal-
lenging, a simplified computational model may act
as an auxiliary means for probing potential prin-
ciples which underlie the theory of brain reserve.
Mathematical models of neuronal biology are now
available at a scale from the single cell through to
the macroscopic scale of large cell populations.9 –11

Here, we use a recently developed neuronal net-
work model to examine the effects of simulated
synaptogenesis and the slower, simultaneous ef-
fects of neural death and neurogenesis on the re-
sulting neuroanatomical architecture.

Our model simulates the dynamical activity of a
coupled collection of neurons, linked together by a
continually rewiring structural connectivity net-
work. Neurocomputational models vary greatly in
their physiologic complexity, but all invariably con-
tain important mathematical complexities (“nonlin-
earities”) arising from the voltage-dependent nature
of neuronal membrane channels.11 We utilize a sim-
ple one-dimensional nonlinear recursive function
(“map”), which has been previously shown to ap-
proximate the behavior of a more complex neural
mass model.12,13 As dynamical activity evolves on an
underlying structural network, this network is in
turn continuously rewired, using an unsupervised,
activity-dependent rewiring rule.14 This rule upregu-
lates modeled synaptic efficacy between neural ele-
ments that are firing synchronously (simultaneously),
while pruning connections between asynchronous
units. In this sense, it represents a crude approximation

of Hebbian learning, as applied to a binary network
without external stimuli.

Our study aims to characterize the effects of sim-
ulated neuronal death and neurogenesis on the
resulting neuroanatomical connectivity. Neuro-
anatomical connectivity may be characterized us-
ing the methods of modern network theory.15,16 A

FIGURE 1. The Present Study, as Placed in the Context of
Computational Neurosciences

Notes: Computational neurosciences are a relatively new but
rapidly growing collection of disciplines that employ mathematical
techniques to elucidate brain activity and cognitive function. These
disciplines may be subdivided into three broad areas: Neuroinformat-
ics, theoretical neuroscience, and mathematical modeling. Our study
belongs to the latter field. Mathematical brain models attempt to
provide a representation of neuronal activity that is sufficiently ac-
curate to match empirical observations (physiologic validity) while
remaining considerably simpler than In Vivo Brain activity (compu-
tational simplicity). Accurate models of neuronal behavior at the
neuronal microscale have existed since the 1950s (the seminal ex-
ample is the hodgkin-huxley model). Biologically plausible models at
macroscopic (whole brain) scales are more recent in their develop-
ment but are quickly improving in their biologic complexity. These
large-scale models offer the potential to provide a virtual quantitative
laboratory, thus allowing to test empirically generated hypotheses, as
well as to simulate the effects of focal lesions and global degenerative
processes on large-scale brain activity. In this study, we illustrate an
example of such a simulation, and briefly discuss its implications and
usefulness for future empirical research.
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network is defined by a collection of nodes (units)
and internode links (connections). Depending on
the spatial scale of interest, nodes may represent
neurons17 or cortical areas,10 while links may rep-
resent synaptic connections or large-scale cortico-
cortical tracts. The resulting networks may be
quantitatively characterized by computing their lo-
cal and global capacity for information transfer.
These properties are well captured by the metrics
of local and global efficiency.18 Efficiency measures
are based on the smallest number of links which
are required to connect any pair of nodes within a
specified neighborhood (local efficiency) or across
the whole network (global efficiency). There are a
number of conceptual advantages for the charac-
terization of brain networks with local and global
efficiency, compared with the more traditional
metrics of clustering and path length.19

Neuronal network organization combines the
competing demands of regional segregation and
distributive integration.20,21 Highly clustered (lo-
cally efficient), yet globally interconnected (glo-
bally efficient) “small-world” networks are consid-
erably more effective in reconciling these opposing
demands, when compared with artificially gener-
ated random or ordered networks.22 A multitude
of recent studies have reported that structural and
functional brain connectivity exhibits small-world
properties at multiple spatial and temporal scales,
as recently reviewed.23,24 Concurrent with these
findings, simulations have previously shown that
the present model self-organizes from a random to
a small-world network configuration,14 mimicking
to an extent, events occurring in the developing
nervous system. The system continues to slowly
rewire once it has attained a small-world architec-
ture, although the changes in network configura-
tion become more subtle, emulating processes that
may occur in the brain throughout the lifespan.

Recent analyses of functional connectivity net-
works extracted from electroencephalogram and
magnetoencephalogram recordings have reported
small-world disturbances in a number of neurologic
and psychiatric disorders,25 including in Alzheimer
disease26 and in schizophrenia.27–29 Interestingly,
network disorganization correlated with disease se-
verity in Alzheimer disease26 and with illness dura-
tion in schizophrenia.29 On the other hand, medica-
tion dose was reported to have a normalizing

influence on network architecture in first episode
psychosis.28 Hence, the organization of functional
brain networks appears to reflect important aspects
of the clinical presentation of several mental ill-
nesses.

What are the neuropathologic mechanisms under-
lying the disruption of functional brain networks in
psychiatric disorders? To our knowledge, this ques-
tion has not yet been addressed. Here, noting that
functional networks appear to strongly reflect the
underlying structural connectivity,10 we take the first
steps in linking structural lesions to functional net-
work disorganization. We extend the present model
to study the effect of random or targeted node dele-
tion on the network’s connectivity properties, hence
expanding on recent studies of targeted attack in
small-world networks extracted from structural con-
nectivity30 and functional magnetic resonance imag-
ing31 datasets, as well as in “scale-free” networks on
a theoretical (Hopfield) model of autoassociative
memory.32 In addition, we consider whether a
slower, simulated neurogenesis (node addition) has
a protective effect against the potential deleterious
effects of node deletion.

METHODS

Adaptive Neuronal Model

The core model consists of a dynamical compo-
nent, representing spontaneous neuronal activity,
and a structural component, representing underlying
neuroanatomical connectivity, on which the neuro-
nal dynamics unfold. The dynamical component
states how individual elements behave, in the ab-
sence of any inputs from other nodes, and is typically
derived from physiologic study of core neuronal pro-
cesses.33 For the present purposes, we employ the
nonlinear “logistic map,” for which the current state
of the system is derived from its most recent state
through a strong nonlinear rule. The structural com-
ponent represents a neuroanatomical connectivity
network and determines how individual neural ele-
ments interact. In the present study, structural con-
nections are represented by a directed binary net-
work—that is, a connection from one node to another
is either fully present or absent. Together, these two
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components—structural and dynamical—provide a
model for spontaneous activity in distributed cortical
systems.

Synaptic Plasticity

To this model, we add a rule which introduces
activity-dependent rewiring of connections at dis-
crete points in time. We employ the simple rule
introduced by Gong and van Leeuwen.14 According
to this rule, the structural connectivity is iteratively
reshaped by dynamical activity through an unsuper-
vised Hebbian rule. Following every 1,000 iterations
of the dynamics, a node is randomly chosen and its
connections are rewired such that it gains a link to a
node with which it is most synchronous and loses a
link to a neighbor with which it is least synchronous.
If the most synchronous node is already a neigh-
bor, a different node is chosen until a rewiring is
made. In this way, the structural connectivity is
continually rewired based on the dynamical activ-
ity it generates, hence mimicking Hebbian learn-
ing. The system can be considered symbiotic in the
sense that the structural network determines how
the neural subsystems interact on fast time scales,
but is itself subject to rewiring on a slow time scale,
according to the states of the underlying ele-
ments.14,34 As with these previous studies, we start
our networks with random initial connectivity,
and we allow them to rewire until they reach a
steady state. Formal mathematical details of the
model are provided in the Appendix.

Neuronal Death and Neurogenesis

Neuronal death was simulated by node deletion,
at a specified time interval. Nodes were deleted ran-
domly or by targeting central nodes—defined as
those nodes which lie on a large number of short
paths (nodes with high values of “betweenness cen-
trality”35). Neurogenesis was simulated by introduc-
ing new nodes into the system, also at regular inter-
vals. Such nodes are initially randomly connected at
the average network rate. These nodes henceforth
obey the same adaptive rewiring rule for synaptic
plasticity. Generally, the rate of neurogenesis was an
order of magnitude slower than the rate of simulated
cell death. Simulations were conducted with net-

works of 200 nodes, and 4,000 links (corresponding
to approximately 1 in 10 possible connections), and
proceeded until the network size was reduced by
50%. Results were averaged over 40 such simula-
tions, hence providing estimates of the mean and
standard errors of our principle network metrics.

Metrics of Network Structure

We evaluated structural network properties using
local and global efficiency—defined as a harmonic
mean of the characteristic path length within neigh-
borhoods (local efficiency) or across the whole net-
work (global efficiency). The metrics were compared
against corresponding degree-preserved, random
networks, to evaluate small-world properties. Small-
world networks are known to manifest a signifi-
cantly higher local efficiency, but only slightly lower
global efficiency, when compared with random net-
works. In addition to characterizing the efficiency, it
is also of interest to evaluate network disconnection
directly. To this end, we measured network reach-
ability—the proportion of all pairs of nodes which
are connected by a sequence of links. Formal def-
initions of these metrics are provided in the Ap-
pendix.

RESULTS

As previously reported, the current modeled system
evolves from a random to a small-world network
configuration,14 as characterized by a significant el-
evation of local efficiency, with a correspondingly
small reduction in global efficiency. This small-world
architecture hence optimally combines local informa-
tion segregation (processing in small, clustered
cliques) and global information integration (rapid
integration of distributed activity).

After this evolution, we simulated neuronal death
by deleting one node at every 1,000th rewiring step.
The system continues to iteratively rewire according
to the original activity-dependent rule. Figures 2A, B
show the effects of random and targeted node dele-
tions on local and global network efficiency. Random
node deletions resulted in a gradual decrease in local
efficiency, with a minimal effect on global efficiency.
Hence, the net effect is a slight alteration in local
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structure, but invariance in global structure, with a
preservation of small-world properties, when com-
pared with random networks.

In contrast, targeted deletion of central nodes
results in a moderate increase in local efficiency,
but a marked reduction in global efficiency, after a
short period of relative resilience to the insults.
The reduced global efficiency is closely correlated
to network disconnection (Fig. 2C). The combina-
tion of high local efficiency and low global effi-
ciency are characteristic properties of ordered,
non–small-world networks—networks which are
hence not optimized for global integration of in-
formation.22

We next consider whether simulating neurogen-
esis by the addition of randomly connected nodes

counteracts the effect of targeted node deletion. Fig-
ure 3A shows the effect of node addition on the
resulting local and global efficiency. Nodes were
added at a significantly slower rate compared with
the rate of node deletion. Figure 3B shows that a
relatively slow addition of one node for every five
removed nodes is able to largely preserve a small-
world architecture. On the other hand, an even
slower frequency of addition failed to preserve
small-world properties (Fig. 3B). Interestingly, the
intermittent addition of nodes is evident as brief and
partial rectifications in the system’s global efficiency.
Hence, as the frequency of node addition is reduced,
so the overall properties of the system shift from a
small-world system to a nonphysiologic overly or-
dered state.

FIGURE 2. Effects of Random and Targeted Node Deletion on Local Efficiency (A) and Global Efficiency (B) of the Resulting
Networks

Notes: Corresponding randomized networks are shown for comparison. (C) The effect of random and targeted node deletion on network
reachability (the proportion of node pairs which may be connected by a sequence of links). Note the close correspondence between a reduction
in reachability (corresponding to network disconnection) and the loss in global efficiency. For all simulations, the deletion rate was one node
in every 1,000 rewiring steps. Error bars represent the SE of the mean estimated over 40 repeated simulations.
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DISCUSSION

Neurocomputational models attempt to simplify the
complexity of real world systems while preserving
sufficient plausibility, so as to allow a meaningful
investigation (Fig. 1). In this spirit, our simple model
captures the nonlinear nature of neuronal dynamics,
as well as a mutually interdependent relationship
between dynamics and structural connectivity, hence
mimicking key physiologic processes. We find that
the small-world properties of the model are resilient
to random node deletion, but are significantly af-
fected by central node deletion. However, a removal
of a small proportion of central nodes is well toler-
ated, while a simulated neurogenesis at a relatively
slow rate is able to largely restore a small-world
architecture.

The distinct changes in global network structure
that follow random or targeted insults provide a
link between the clinical and neuropathologic fea-
tures of mental illness and the disruptions in struc-
tural and functional networks of brain connectiv-
ity. Our present findings point to the importance of
alternative hubs in the response to targeted attack.
Such hubs are able to maintain global interconnect-

edness, and hence a small-world structure, in the
face of targeted deletion. In our simulations, ran-
domly added nodes are likely to restore small-
world properties by assuming the role of such
hubs. Hence, an increased number of such hubs is
likely to confer increased network resilience in the
case of targeted attack. Notably, the rapidly ex-
panding network-based analyses of structural and
functional cortical connectivity have already iden-
tified candidate hub locations and their putative
roles in empirical data.10,31 For instance, it is likely
that heteromodal association regions act as hubs
by integrating information from specialized corti-
cal processing regions.31

The present study supports the hypothesis that
synaptogenesis and possibly neurogenesis in candi-
date hub locations could confer a protective role in
global system integrity, hence expanding on and
complementing recent robustness analyses of static
(nonrewiring) brain networks extracted from empir-
ical data.30,31 Consequently, we hypothesize that the
early involvement of hubs in neurodegenerative dis-
ease will adversely affect the severity of clinical pre-
sentation, as well as the ensuing progression of ill-
ness. As the methodology of network acquisition and
analysis improves, the extraction of functional brain

FIGURE 3. Effect of Targeted Node Deletion, Together with Node Addition on Local Efficiency (A) and Global Efficiency (B) of
the Resulting Networks

Notes: Corresponding randomized networks are shown for comparison. The system largely retains its small-world properties, when one
randomly connected node was inserted at every 5,000 steps. On the contrary, node insertion at a slower frequency (1 in every 20,000 steps) was
largely unsuccessful at counteracting the effects of targeted deletion, as evidenced by the values of local and global efficiencies that approximate
the “targeted node deletion” networks from Fig. 1. The times of node insertion at this frequency is visually apparent, as prominent “Spikes” in
global efficiency. Error bars represent the SE of the mean estimated over 40 repeated simulations.
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networks from neuroimaging investigations holds
promise as a future aid in the establishment of psy-
chiatric diagnoses and in monitoring the progression
of illness.

A number of methodologic simplifications and
assumptions necessarily underlie the current model. For
example, the model lacks spatial constraints and con-
duction time delays. Notwithstanding explicit node
removal and addition, the number of connections is
kept constant throughout its temporal evolution. In
addition, point-wise node deletion in itself does not
embody the gradual deterioration in neuronal integ-
rity and function that often precedes death. Despite
these limitations, the model produced interesting
and even unexpected results, such as a slight in-
crease in local efficiency after a period of targeted
node deletion. This increase is likely to come at the
expense of functional dissociation into segregated
neuronal “modules,” after the deletion of globally
interconnecting central nodes. Moreover, the gain in
local efficiency may not translate directly into abso-
lute functional gains, as the overall size of the net-
work is greatly reduced. Findings such as these may
therefore be used to test explicit hypotheses in real
world scenarios, which in turn can further help de-
velop neurocomputational models and so advance a
profitable dialog between computational, biologic,
and clinical neuroscientists.

APPENDIX

Technical Description of Neuronal
Plasticity Model

The following appendix outlines the mathematical
details of the present model. These details are pro-
vided for completeness, and we refer the reader to
the Methods section for an informal and comprehen-
sive description of the model and its neurobiologic
underpinnings.

Structural and Dynamical Components of the Model.
We represent the structural connectivity with a
directed binary graph (network) G � �N, L�, con-
sisting of N, the set of n nodes, and L, the set of
directed links (edges, connections) between pairs
of nodes. G may be defined by a corresponding

connectivity (adjacency) matrix H, in which a node
j is said to neighbor node i (i, j � N), when there
exists a direct connection from i to j, as represented
by Hij � 1; the lack of such connection is denoted
by Hij � 0 (note that Hii � 0 by definition). Let Ni

represent the set of neighbors (neighborhood) of
node i and let ni be the number of neighbors (de-
gree) of i; correspondingly let the complement N� i

represent the set of all nonneighbors of i.14

The structural set of nodes N is assigned a corre-
sponding dynamical ensemble V; hence each node i
has a corresponding dynamical unit Vi. The unit state
at time t, Vi�t�, is governed by a commonly used
quadratic logistic equation,

Fa�Vi�t�� � 1 � a�Vi�t��2,

where the parameter a governs the nature of the
dynamics. The neural ensemble is then constructed
through coupling these maps, as

Vi�t � 1� � �1 � �� Fa�Vi�t�� �
�

nj
�
j�Ni

Fa�Vj�t��,

where � represents the coupling strength (0 � � � 1)
between dynamical units. Following Gong and van
Leeuwen,14 we set � � 1.7 and � � 0.5. This choice of
parameter values results in chaotic dynamics and
allows for weakly synchronized oscillations but not
complete synchronization.36 The system has previ-
ously been shown to evolve to a small-world net-
work across a range of parameter values.14,34

Activity-Dependent Rewiring Rule. A randomly cho-
sen node i � N is rewirable if there exists a nonneigh-
bor k � N� i that minimizes �Vi�t� � VN�t��; that is, when
i is not connected to a node, with which it is most
synchronous. If rewiring is to occur, we select a
neighbor j � Ni that maximizes �Vi�t� � VNi�t�� (the
least synchronous neighbor of i) and set the connec-
tions as Hik � 1 and Hij � 0. This rule exploits the
fact that all nodes have identical parameter values so
that the Euclidean distance �Vi�t� � Vj�t�� accurately
captures pair-wise synchronization.14

Global and Local Efficiency and Reachability. Global
efficiency, Eglob, is defined as a harmonic mean of the
shortest path length over the network. Hence,

Eglob �
¥

i, j�N
1/dij

n�n � 1�
, where dij represents the shortest
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path length between nodes i and j. Local efficiency,
Eloc, is defined equivalently, but on individual neigh-
borhoods, rather than on the whole network. Hence,

for an individual node k, Eloc
k �

¥
i, j�Nk

1/dij

nk(nk � 1). The

reachability, R, represents the proportion of all pairs
of nodes which are connected by a path of finite

length. Hence R �
¥

i, j�N
rij

n(n � 1), where rij � 1 if dij is

finite, and rij � 0 otherwise.18
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